Современная мебель

Вода в системах водяного отопления. При охлаждении вода сжимается или расширяется Что происходит с водой при сильном нагревании

Японский физик Масакадзу Мацумото выдвинул теорию, которая объясняет, почему вода при нагревании от 0 до 4°C сжимается, вместо того чтобы расширяться. Согласно его модели, вода содержит микрообразования — «витриты», представляющие собой выпуклые пустотелые многогранники, в вершинах которых находятся молекулы воды, а ребрами служат водородные связи. При повышении температуры конкурируют между собой два явления: удлинение водородных связей между молекулами воды и деформация витритов, приводящая к уменьшению их полостей. В диапазоне температур от 0 до 3,98°C последнее явление доминирует над эффектом удлинения водородных связей, что в итоге и дает наблюдаемое сжатие воды. Экспериментального подтверждения модели Мацумото пока что нет — впрочем, как и других теорий, объясняющих сжатие воды.

В отличие от подавляющего большинства веществ, вода при нагревании способна уменьшать свой объем (рис. 1), то есть обладает отрицательным коэффициентом теплового расширения. Впрочем, речь идет не обо всём температурном интервале, где вода существует в жидком состоянии, а лишь об узком участке — от 0°C примерно до 4°C. При бо льших температурах вода, как и другие вещества, расширяется.

Между прочим, вода — не единственное вещество, имеющее свойство сжиматься при увеличении температуры (или расширяться при охлаждении). Подобным поведением могут «похвастать» еще висмут, галлий, кремний и сурьма. Тем не менее, в силу своей более сложной внутренней структуры, а также распространенности и важности в разнообразных процессах, именно вода приковывает внимание ученых (см. Продолжается изучение структуры воды , «Элементы», 09.10.2006).

Некоторое время назад общепринятой теорией, отвечающей на вопрос, почему вода увеличивает свой объем при понижении температуры (рис. 1), была модель смеси двух компонент — «нормальной» и «льдоподобной». Впервые эта теория была предложена в XIX веке Гарольдом Витингом и позднее была развита и усовершенствована многими учеными. Сравнительно недавно в рамках обнаруженного полиморфизма воды теория Витинга была переосмыслена. Отныне считается, что в переохлажденной воде существует два типа льдообразных нанодоменов: области, похожие на аморфный лед высокой и низкой плотности. Нагревание переохлажденной воды приводит к плавлению этих наноструктур и к появлению двух видов воды: с большей и меньшей плотностью. Хитрая температурная конкуренция между двумя «сортами» образовавшейся воды и порождает немонотонную зависимость плотности от температуры. Однако пока эта теория не подтверждена экспериментально.

С приведенным объяснением нужно быть осторожным. Не случайно здесь говорится лишь о структурах, которые напоминают аморфный лед. Дело в том, что наноскопические области аморфного льда и его макроскопические аналоги обладают разными физическими параметрами.

Японский физик Масакадзу Мацумото решил найти объяснение обсуждаемого здесь эффекта «с нуля», отбросив теорию двухкомпонентной смеси. Используя компьютерное моделирование, он рассмотрел физические свойства воды в широком диапазоне температур — от 200 до 360 К при нулевом давлении, чтобы в молекулярном масштабе выяснить истинные причины расширения воды при ее охлаждении. Его статья в журнале Physical Review Letters так и называется: Why Does Water Expand When It Cools? («Почему вода при охлаждении расширяется?»).

Изначально автор статьи задался вопросом: что влияет на коэффициент теплового расширения воды? Мацумото считает, что для этого достаточно выяснить влияние всего трех факторов: 1) изменения длины водородных связей между молекулами воды, 2) топологического индекса — числа связей на одну молекулу воды и 3) отклонения величины угла между связями от равновесного значения (углового искажения).

Перед тем как рассказать о результатах, полученных японским физиком, сделаем важные замечания и разъяснения по поводу вышеупомянутых трех факторов. Прежде всего, привычная химическая формула воды H 2 O соответствует лишь парообразному ее состоянию. В жидкой форме молекулы воды посредством водородной связи объединяются в группы (H 2 O) x , где x — количество молекул. Наиболее энергетически выгодно объединение из пяти молекул воды (x = 5) с четырьмя водородными связями, в котором связи образуют равновесный , так называемый тетраэдральный угол , равный 109,47 градуса (см. рис. 2).

Проанализировав зависимость длины водородной связи между молекулами воды от температуры, Мацумото пришел к ожидаемому выводу: рост температуры рождает линейное удлинение водородных связей. А это, в свою очередь, приводит к увеличению объема воды, то есть к ее расширению. Сей факт противоречит наблюдаемым результатам, поэтому далее он рассмотрел влияние второго фактора. Как коэффициент теплового расширения зависит от топологического индекса?

Компьютерное моделирование дало следующий результат. При низких температурах наибольший объем воды в процентном отношении занимают кластеры воды, у которых на одну молекулу приходится 4 водородных связи (топологический индекс равен 4). Повышение температуры вызывает уменьшение количества ассоциатов с индексом 4, но при этом начинает возрастать число кластеров с индексами 3 и 5. Проведя численные расчеты, Мацумото обнаружил, что локальный объем кластеров с топологическим индексом 4 с повышением температуры практически не меняется, а изменение суммарного объема ассоциатов с индексами 3 и 5 при любой температуре взаимно компенсирует друг друга. Следовательно, изменение температуры не меняет общий объем воды, а значит, и топологический индекс никакого воздействия на сжатие воды при ее нагревании не оказывает.

Остается выяснить влияние углового искажения водородных связей. И вот здесь начинается самое интересное и важное. Как было сказано выше, молекулы воды стремятся объединиться так, чтобы угол между водородными связями был тетраэдральным. Однако тепловые колебания молекул воды и взаимодействия с другими молекулами, не входящими в кластер, не дают им этого сделать, отклоняя величину угла водородной связи от равновесного значения 109,47 градуса. Чтобы как-то количественно охарактеризовать этот процесс угловой деформации, Мацумото с коллегами, основываясь на своей предыдущей работе Topological building blocks of hydrogen bond network in water , опубликованной в 2007 году в Journal of Chemical Physics , выдвинули гипотезу о существовании в воде трехмерных микроструктур, напоминающих выпуклые полые многогранники. Позднее, в следующих публикациях, такие микроструктуры они назвали витритами (рис. 3). В них вершинами являются молекулы воды, роль ребер играют водородные связи, а угол между водородными связями — это угол между ребрами в витрите.

Согласно теории Мацумото, существует огромное разнообразие форм витритов, которые, как мозаичные элементы, составляют большую часть структуры воды и которые при этом равномерно заполняют весь ее объем.

Молекулы воды стремятся создать в витритах тетраэдральные углы, поскольку витриты должны обладать минимально возможной энергией. Однако из-за тепловых движений и локальных взаимодействий с другими витритами некоторые микроструктуры не обладают геометрией с тетраэдральными углами (или углами, близкими к этому значению). Они принимают такие структурно неравновесные конфигурации (не являющиеся для них самыми выгодными с энергетической точки зрения), которые позволяют всему «семейству» витритов в целом получить наименьшее значение энергии среди возможных. Такие витриты, то есть витриты, которые как бы приносят себя в жертву «общим энергетическим интересам», называются фрустрированными. Если у нефрустрированных витритов объем полости максимален при данной температуре, то фрустрированные витриты, напротив, обладают минимально возможным объемом.

Компьютерное моделирование, проведенное Мацумото, показало, что средний объем полостей витритов с ростом температуры линейным образом уменьшается. При этом фрустрированные витриты значительно уменьшают свой объем, тогда как объем полости нефрустрированных витритов почти не меняется.

Итак, сжатие воды при увеличении температуры вызвано двумя конкурирующими эффектами — удлинением водородных связей, которое приводит к увеличению объема воды, и уменьшением объема полостей фрустрированных витритов. На температурном отрезке от от 0 до 4°C последнее явление, как показали расчеты, преобладает , что в итоге и приводит к наблюдаемому сжатию воды при повышении температуры.

Осталось дождаться экспериментального подтверждения существования витритов и такого их поведения. Но это, увы, очень непростая задача.

Нас окружает вода, сама по себе, в составе других веществ и тел. Она может быть в твердом, жидком или газообразном состоянии, но вода всегда вокруг нас. Почему трескается асфальт на дорогах, почему стеклянная банка с водой на морозе лопается, почему в холодное время года запотевают окна, почему самолет оставляет в небе белый след - ответы на все эти и другие «почему» мы будем искать на этом уроке. Мы узнаем, как изменяются свойства воды при нагревании, охлаждении и замораживании, как образуются подземные пещеры и причудливые фигуры в них, как работает термометр.

Тема: Неживая природа

Урок: Свойства воды в жидком состоянии

В чистом виде вода не имеет вкуса, запаха и цвета, но она почти никогда не бывает такой, потому что активно растворяет в себе большинство веществ и соединяется с их частицами. Так же вода может проникать в различные тела (ученые нашли воду даже в камнях).

Если в стакан набрать воды из-под крана, она будет казаться чистой. Но на самом деле, это - раствор многих веществ, среди которых есть газы (кислород, аргон, азот, углекислый газ), различные примеси, содержащиеся в воздухе, растворенные соли из почвы, железо из водопроводных труб, мельчайшие нерастворенные частицы пыли и др.

Если нанести пипеткой капельки водопроводной воды на чистое стекло и дать ей испариться, останутся едва заметные пятнышки.

В воде рек и ручьев, большинства озер содержатся различные примеси, например, растворенные соли. Но их немного, потому что эта вода - пресная.

Вода течет на земле и под землей, наполняет ручьи, озера, реки, моря и океаны, создает подземные дворцы.

Прокладывая себе путь сквозь легкорастворимые вещества, вода проникает глубоко под землю, унося их с собой, и через щелочки и трещинки в скальных породах, образуя подземные пещеры, капает с их свода, создавая причудливые скульптуры. Миллиарды капелек воды за сотни лет испаряются, а растворенные в воде вещества (соли, известняки) оседают на сводах пещеры, образуя каменные сосульки, которые называют сталактитами.

Сходные образования на полу пещеры называются сталагмитами.

А когда сталактит и сталагмит срастается, образуя каменную колонну, это называют сталагнатом.

Наблюдая ледоход на реке, мы видим воду в твердом (лед и снег), жидком (текущая под ним) и газообразном состоянии (мельчайшие частицы воды, поднимающиеся в воздух, которые ещё называют водяным паром).

Вода может одновременно находится во всех трех состояниях: в воздухе всегда есть водяной пар и облака, которые состоят из капелек воды и кристалликов льда.

Водяной пар невидим, но его можно легко обнаружить, если оставить в теплой комнате охлаждавшийся в холодильнике в течение часа стакан с водой, на стенках которого сразу появятся капельки воды. При соприкосновении с холодными стенками стакана, водяной пар, содержащийся в воздухе, преобразуется в капельки воды и оседает на поверхности стакана.

Рис. 11. Конденсат на стенках холодного стакана ()

По этой же причине в холодное время года запотевает внутренняя сторона оконного стекла. Холодный воздух не может содержать столько же водяного пара, сколько и теплый, поэтому какое-то его количество конденсируется - превращается в капельки воды.

Белый след за летящим в небе самолетом - тоже результат конденсации воды.

Если поднести к губам зеркальце и выдохнуть, на его поверхности останутся мельчайшие капельки воды, это доказывает то, что при дыхании человек вдыхает с воздухом водяной пар.

При нагревании вода «расширяется». Это может доказать простой опыт: в колбу с водой опустили стеклянную трубку и замерили уровень воды в ней; затем колбу опустили в сосуд с теплой водой и после нагревания воды повторно замерили уровень в трубке, который заметно поднялся, поскольку вода при нагревании увеличивается в объеме.

Рис. 14. Колба с трубкой, цифрой 1 и чертой обозначен первоначальный уровень воды

Рис. 15. Колба с трубкой, цифрой 2 и чертой обозначен уровень воды при нагревании

При охлаждении вода «сжимается». Это может доказать сходный опыт: в этом случае колбу с трубкой опустили в сосуд со льдом, после охлаждения уровень воды в трубке понизился относительно первоначальной отметки, потому что вода уменьшилась в объеме.

Рис. 16. Колба с трубкой, цифрой 3 и чертой обозначен уровень воды при охлаждении

Так происходит, потому что частицы воды, молекулы, при нагревании движутся быстрее, сталкиваются между собой, отталкиваются от стенок сосуда, расстояние между молекулами увеличивается, и поэтому жидкость занимает больший объем. При охлаждении воды движение её частиц замедляется, расстояние между молекулами уменьшается, и жидкости требуется меньший объем.

Рис. 17. Молекулы воды обычной температуры

Рис. 18. Молекулы воды при нагревании

Рис. 19. Молекулы воды при охлаждении

Такими свойствами обладает не только вода, но и другие жидкости (спирт, ртуть, бензин, керосин).

Знание этого свойства жидкостей привело к изобретению термометра (градусника), где используется спирт или ртуть.

При замерзании вода расширяется. Это можно доказать, если емкость, наполненную до краев водой, неплотно накрыть крышкой и поставить в морозильную камеру, через время мы увидим, что образовавшийся лед приподнимет крышку, выйдя за пределы емкости.

Это свойство учитывается при прокладывании водопроводных труб, которые обязательно утепляются, чтобы при замерзании образовавшийся из воды лед не разорвал трубы.

В природе замерзающая вода может разрушать горы: если осенью в трещинах скал скапливается вода, зимой она замерзает, и под напором льда, который занимает больший объем, чем вода, из которой он образовался, горные породы трескаются и разрушаются.

Вода, замерзающая в трещинах дорог, приводит к разрушению асфальтового покрытия.

Длинные гребни, напоминающие складки, на стволах деревьев - раны от разрывов древесины под напором замерзающего в ней древесного сока. Поэтому в холодные зимы можно услышать треск деревьев в парке или в лесу.

  1. Вахрушев А.А., Данилов Д.Д. Окружающий мир 3. М.: Баллас.
  2. Дмитриева Н.Я., Казаков А.Н. Окружающий мир 3. М.: ИД «Федоров».
  3. Плешаков А.А.Окружающий мир 3. М.: Просвещение.
  1. Фестиваль педагогических идей ().
  2. Наука и образование ().
  3. Открытый класс ().
  1. Составьте короткий тест (4 вопроса с тремя вариантами ответа) на тему «Вода вокруг нас».
  2. Проведите небольшой опыт: стакан с очень холодной водой поставьте на стол в теплой комнате. Опишите, что будет происходить, объясните, почему.
  3. *Нарисуйте движение молекул воды в нагретом, нормальном и охлажденном состоянии. Если нужно, сделайте подписи на своем рисунке.

В системах водяного отопления вода используется для передачи тепла от его генератора к потребителю.
Наиболее важными свойствами воды являются:
теплоемкость;
изменение объема при нагреве и при охлаждении;
характеристики кипения при изменении внешнего давления;
кавитация.
Рассмотрим данные физические свойства воды.

Удельная теплоемкость

Важным свойством любого теплоносителя является его теплоемкость. Если выразить ее через массу и разность температур теплоносителя, то получится удельная теплоемкость. Она обозначается буквой c и имеет размерность кДж/(кг K) Удельная теплоемкость - это количество тепла, которое необходимо передать 1 кг вещества (например, воды), чтобы нагреть его на 1 °C. И наоборот, вещество отдает такое же количество энергии при охлаждении. Среднее значение удельной теплоемкости воды в диапазоне между 0 °C и 100 °C составляет:
c = 4,19 кДж/(кг K) или c = 1,16 Втч/(кг K)
Количество поглощаемого или выделяемого тепла Q , выраженное в Дж или кДж , зависит от массы m , выраженной в кг , удельной теплоемкости c и разности температур, выраженной в K .

Увеличение и уменьшение объема

Все природные материалы расширяются при нагревании и сжимаются при охлаждении. Единственным исключением из этого правила является вода. Это уникальное ее свойство называется аномалией воды. Вода имеет наибольшую плотность при +4 °C, при которой 1 дм3 = 1 л имеет массу 1 кг.

Если вода нагревается или охлаждается относительно этой точки, ее объем увеличивается, что означает уменьшение плотности, т. е. вода становится легче. Это можно отчетливо наблюдать на примере резервуара с точкой перелива. В резервуаре находится ровно 1000 см3 воды с температурой +4 °C. При нагревании воды некоторое количество выльется из резервуара в мерную емкость. Если нагреть воду до 90 °C, в мерную емкость выльется ровно 35,95 см3, что соответствует 34,7 г. Вода также расширяется при ее охлаждении ниже +4 °C.

Благодаря этой аномалии воды у рек и озер зимой замерзает именно верхний слой. По той же причине лед плавает на поверхности и весеннее солнце может его растопить. Этого бы не происходило, если бы лед был тяжелее воды и опускался на дно.


Резервуар с точкой перелива

Однако, такое свойство расширяться может быть опасным. Например, автомобильные двигатели и водяные насосы могут лопнуть, если вода в них замерзнет. Во избежание этого в воду добавляются присадки, препятствующие ее замерзанию. В системах отопления часто используются гликоли; соотношение воды и гликоля см. в спецификации производителя.

Характеристики кипения воды

Если воду нагревать в открытой емкости, она закипит при температуре 100 °C. Если измерять температуру кипящей воды, окажется, что она остается равной 100 °C пока не испарится последняя капля. Таким образом, постоянное потребление тепла используется для полного испарения воды, т. е. изменения ее агрегатного состояния.

Эта энергия также называется латентной (скрытой) теплотой. Если подача тепла продолжается, температура образовавшегося пара снова начнет подниматься.

Описанный процесс приведен при давлении воздуха 101,3 кПа у поверхности воды. При любом другом давлении воздуха точка кипения воды сдвигается от 100 °C.

Если бы мы повторили описанный эксперимент на высоте 3000 м - например, на Цугшпитце, самой высокой вершине Германии - мы бы обнаружили, что вода там закипает уже при 90 °C. Причиной такого поведения является понижение атмосферного давления с высотой.

Чем ниже давление на поверхности воды, тем ниже будет температура кипения. И наоборот, температура кипения будет выше при повышении давления на поверхности воды. Это свойство используется, например, в скороварках.

График показывает зависимость температуры кипения воды от давления. Давление в системах отопления намеренно повышается. Это помогает предотвратить образование пузырьков газа в критических рабочих режимах, а также предотвращает попадание наружного воздуха в систему.

Расширение воды при нагревании и защита от избыточного давления

Системы водяного отопления работают при температурах воды до 90 °C. Обычно система заполняется водой при температуре 15 °C, которая затем расширяется при нагревании. Нельзя допустить, чтобы это увеличение объема привело к возникновению избыточного давления и переливу жидкости.


Когда отопление отключается в летний период, объем воды возвращается к первоначальному значению. Таким образом, для обеспечения беспрепятственного расширения воды необходимо установить достаточно большой бак.

Старые системы отопления имели открытые расширительные баки. Они всегда располагались выше самого высокого участка трубопровода. При повышении температуры в системе, что приводило к расширению воды, уровень в баке также повышался. При снижении температуры он, соответственно, понижался.

Современные системы отопления используют мембранные расширительные баки (МРБ). При повышении давления в системе нельзя допускать увеличения давления в трубопроводах и других элементах системы выше предельного значения.

Поэтому обязательным условием для каждой системы отопления является наличие предохранительного клапана.

При повышении давления сверх нормы предохранительный клапан должен открываться и стравливать лишний объем воды, который не может вместить расширительный бак. Тем не менее, в тщательно спроектированной и обслуживаемой системе такое критическое состояние никогда не должно возникать.

Все эти рассуждения не учитывают тот факт, что циркуляционный насос еще больше увеличивает давление в системе. Взаимосвязь между максимальной температурой воды, выбранным насосом, размером расширительного бака и давлением срабатывания предохранительного клапана должна быть установлена самым тщательным образом. Случайный выбор элементов системы - даже на основании их стоимости - в данном случае неприемлем.

Мембранный расширительный бак поставляется заполненным азотом. Начальное давление в расширительном мембранном баке должно быть отрегулировано в зависимости от системы отопления. Расширяющаяся вода из системы отопления поступает в бак и сжимает газовую камеру через диафрагму. Газы могут сжиматься, а жидкости - нет.

Давление

Определение давления
Давление - это статическое давление жидкостей и газов, измеренное в сосудах, трубопроводах относительно атмосферного давления (Па, мбар, бар).

Статическое давление
Статическое давление - это давление неподвижной жидкости.
Статическое давление = уровень выше соответствующей точки измерения + начальное давление в расширительном баке.

Динамическое давление
Динамическое давление - это давление движущегося потока жидкости. Давление нагнетания насоса Это давление на выходе центробежного насоса во время его работы.

Перепад давления
Давление, развиваемое центробежным насосом для преодоления общего сопротивления системы. Оно измеряется между входом и выходом центробежного насоса.

Рабочее давление
Давление, имеющееся в системе при работе насоса. Допустимое рабочее давление Максимальное значение рабочего давления, допускаемого из условий безопасности работы насоса и системы.

Кавитация

Кавитация - это образование пузырьков газа в результате появления локального давления ниже давления парообразования перекачиваемой жидкости на входе рабочего колеса. Это приводит к снижению производительности (напора) и КПД и вызывает шумы и разрушение материала внутренних деталей насоса. Из-за схлопывания пузырьков воздуха в областях с более высоким давлением (например, на выходе рабочего колеса) микроскопические взрывы вызывают скачки давления, которые могут повредить или разрушить гидравлическую систему. Первым признаком этого служит шум в рабочем колесе и его эрозия.

Важным параметром центробежного насоса является NPSH (высота столба жидкости над всасывающим патрубком насоса). Он определяет минимальное давление на входе насоса, требуемое данным типом насоса для работы без кавитации, т. е. дополнительное давление, необходимое для предотвращения появления пузырьков. На значение NPSH влияют тип рабочего колеса и частота вращения насоса. Внешними факторами, влияющими на данный параметр, являются температура жидкости, атмосферное давление.

Предотвращение кавитации
Чтобы избежать кавитации, жидкость должна поступать на вход центробежного насоса при определенной минимальной высоте всасывания, которая зависит от температуры и атмосферного давления.
Другими способами предотвращения кавитации являются:
Повышение статического давления
Понижение температуры жидкости (снижение давления парообразования PD)
Выбор насоса с меньшим значением постоянного гидростатического напора (минимальная высота всасывания, NPSH)
Специалисты фирмы "Агроводком" с удовольствием помогут вам определиться с оптимальным выбором насоса. Обращайтесь!

Александр 2013-10-22 09:38:26
[Ответить] [Ответить с цитатой] [Отменить ответ]
николай 2016-01-13 13:10:54

Сообщение от Александр
Скажите проще: если замкнутая система отопления имеет объем воды в 100л. и температуру 70 градусов - на сколько увеличится обьем воды. давление воды в системе 1,5 бар.

3,5--4,0 литра


[Ответить] [Ответить с цитатой] [Отменить ответ]

На вопрос Почему вода при охлаждении расширяется в объеме, когда другие вещества при охлаждении сжимаются? заданный автором христосоваться лучший ответ это Охлаждаясь, вода вначале ведет себя как многие другие соединения: понемногу уплотняется - уменьшает свой удельный объем. Но при 4 oС (точнее, при 3,98 °С) наступает кризисное состояние - структурная перестройка, и при дальнейшем понижении температуры объем воды уже не уменьшается, а увеличивается. При охлаждении в нормальных условиях ниже 0 °С вода кристаллизируется, образуя лед, плотность которого меньше, а объем почти на 10% больше объема исходной воды.
Увеличение объема объясняется тем, что каждая молекула в структуре льда соединена водородными связями с четырьмя другими молекулами. В результате в фазе льда образуется ажурная конструкция с “полостями” между фиксированными молекулами воды, что вызывает значительное расширение всей замерзшей массы. Кристаллическая структура льда напоминает структуру алмаза: каждая молекула Н2O окружена четырьмя ближайшими к ней молекулами, участвующих в формировании водородной связи и находящимися на одинаковых расстояниях от нее, равных 2,76 ангстрем и размещенных в вершинах правильного тетраэдра под углами, равными 109°28" (см рис.). В связи с низким координационным числом структура льда является сетчатой, что влияет на его невысокую плотность. Ажурная структура льда приводит к тому, что его плотность, равная 916,7 кг/м³ при 0 °C, ниже плотности воды (999,8 кг/м³) при той же температуре.
Поэтому вода, превращаясь в лёд, увеличивает свой объём примерно на 9 %:

В процессе таяния, при 0 °С, примерно 10-15% воды утрачивает связи с соединениями, в результате увеличивается подвижность части молекул, и они погружаются в те полости, которыми богата ажурная структура льда. Этим объясняется сжатие льда при таянии и большая по сравнению с ним плотность образующейся воды, которая возрастает примерно на 10%. Можно считать, что эта величина определенным образом характеризует количество молекул воды, попавших в полости. Плотность образующейся воды достигает максимума при температуре 4 °С, а при дальнейшем росте температуры закономерное расширение воды, связанное с усилением молекулярного движения, превосходит эффект структурной перестройки “лед-вода”, и плотность воды начинает плавно снижаться.

Ответ от 22 ответа [гуру]

Привет! Вот подборка тем с ответами на Ваш вопрос: Почему вода при охлаждении расширяется в объеме, когда другие вещества при охлаждении сжимаются?

Ответ от Placer [новичек]
Вода при охлаждении не расширяется. только после того как вода застынет и станет льдом, только после этого ее объем увееличится, за счет увеличения растояние между молекулами воды.


Ответ от Mike tiaroff [гуру]
вода тоже сжимается.. . вопрос поставлен некорректно. . вода сжимается до -4 градусов, а после этого расширяется.. . называется это фазовым переходом, а при таких переходах вещества ведут себя совершенно невообразимыми способами.. . при нагреве до 100 градусов идет расширение, а выше температура не набирается, а идет переход в пар - тоже фазовый переход.. . связи между молекулами приобретают другие свойства - в воде начинается кристаллизация...

Воде присущи поразительные свойства, которые сильно отличают ее от прочих жидкостей. Но это и хорошо, иначе, обладай вода «обычными» свойствами, планета Земля была бы абсолютно другой.

Для подавляющего большинства веществ характерно при нагревании расширяться. Что довольно легко объяснить с позиции механической теории теплоты. Согласно ей, при нагревании атомы и молекулы вещества начинают двигаться быстрее. В твердых телах колебания атомов достигают большей амплитуды, и им необходимо больше свободного пространства. Как результат – происходит расширение тела.

Тот же самый процесс происходит и с жидкостями, и с газами. То есть, за счет повышения температуры увеличивается скорость теплового движения свободных молекул, и тело расширяется. При охлаждении же, соответственно, происходит сжатие тела. Это свойственно практически для всех веществ. За исключением воды.

При охлаждении в интервале от 0 до 4оС вода расширяется. И сжимается – при нагревании. Когда отметка температуры воды достигает 4оС, в этот момент вода имеет максимальную плотность, которая равна 1000 кг/м3. Если температура ниже или выше этой отметки, то плотность всегда немного меньше.

Благодаря этому свойству при понижении температуры воздуха осенью и зимой в глубоких водоемах происходит интересный процесс. Когда вода охлаждается, она опускается ниже, на дно, однако лишь до того момента, пока ее температура не станет +4оС. Именно по этой причине в больших водоемах более холодная вода находится ближе к поверхности, а более теплая – опускается на дно. Так что когда зимой поверхность воды замерзает, более глубокие слои продолжают сохранять температуру 4оС. Благодаря этому моменту рыба может спокойно зимовать в глубинах покрывшихся льдом водоемов.

Влияние расширения воды на климат

Исключительные свойства воды при нагревании серьезным образом влияют на климат Земли, поскольку около 79% поверхности нашей планеты покрыто водой. За счет солнечных лучей происходит нагревание верхних слоев, которые затем опускаются ниже, а на их месте оказываются холодные слои. Те тоже, в свою очередь, постепенно нагреваются и опускаются ближе ко дну.

Таким образом, слои воды непрерывно меняются, что приводит к равномерному прогреванию, пока не достигается температура, соответствующая максимальной плотности. Затем, нагреваясь, верхние слои становятся менее плотными и уже не опускаются вниз, а остаются наверху и просто постепенно становятся теплее. За счет этого процесса огромные толщи воды довольно легко прогреваются солнечными лучами.

Объем тела напрямую связан с межатомным или межмолекулярным расстоянием вещества. Соответственно, увеличение объема обусловлено увеличением данных расстояний за счет различных факторов. Одним из таких факторов является нагрев.

Вам понадобится

  • Учебник по физике, лист бумаги, карандаш.

Инструкция

Прочитайте в учебнике по , как устроены вещества, имеющие различное агрегатное состояние. Как известно, одно агрегатное состояние вещества отличается от другого явными внешними различиями, например, такими, как твердость, текучесть, масса или объем. Если же взглянуть внутрь каждого из видов веществ, можно заметить, что разница выражается в межатомном или межмолекулярном расстояниях.

Обратите внимание, что масса определенного объема газа всегда меньше массы такого же , а та, в свою очередь, всегда ниже массы твердого тела. Это говорит о том, что количество частиц вещества, умещающихся на единичный объем, у газов гораздо меньше, чем у жидкостей, и еще меньше, чем у твердых тел. Иначе, можно сказать, что концентрация частиц более твердых веществ всегда больше, чем у менее твердых, в частности, у жидких или газообразных. Значит, твердые тела имеют в своей структуре более плотную упаковку атомов, меньшее расстояние между частицами, чем, скажем, у жидкостей или газов.

Вспомните, что происходит с металлами, когда их нагревают. Они расплавляются и приобретают свойство текучести. То есть металлы становятся жидкостями. Если провести эксперимент, то можно заметить, что при расплавлении объем металлического вещества увеличивается. Вспомните также, что происходит с водой при нагревании и последующем кипении. Вода превращается в пар, представляющий собой газообразное состояние воды. Известно, что объем пара гораздо выше объема первоначальной жидкости. Таким образом, при нагревании тел межатомное или межмолекулярное расстояние увеличивается, что подтверждается опытами.